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Supplemental Figure 1.  Identification of small molecule antagonists 
of the Wnt/β-catenin signal transduction pathway. The ~200K com-
pound UTSouthwestern chemical library was screened using a cell 
line with constitutive Wnt/β-catenin pathway activity maintained by 
cell-autonomous Wnt3A protein production (L-Wnt-STF cells; Primary 
screen). Potential Wnt/β-catenin pathway antagonists were identified 
using a stably transfected Wnt-responsive firefly luciferase (FL) and 
control Renilla luciferase (RL) reporters. Approximately 1% of the 
compounds in the library that scored as hits was tested again in a dose-
dependent manner to identify the most potent compounds with 
minimal cellular toxicity (Dose-dependent test). Compounds that 
abrogated FL activity by inhibition of FL activity, or that generally 
blocked cellular secretion of proteins were removed (FL inhibitor and 
exocytosis test). To separate compounds that either inhibit Wnt/β-
catenin pathway response or Wnt3A protein production, compounds 
were tested in HEK293 cells using the same assay as described in the 
Primary screen with the exception that exogenous Wnt3A protein 
(provided in conditioned medium) is used to stimulate pathway 
response (Exogenous Wnt test). Compounds that retained their anti-
pathway activity in this test were considered Inhibitors of Wnt response 
(IWRs), whereas those that did not were considered Inhibitors of Wnt 
production (IWPs). Compounds from both categories were tested for 
effects on two other stem cell-associated signal transduction pathways 
(the Hh and Notch pathways) using cultured cell-based assays similar 
to those used to identify Wnt/β-catenin pathway antagonists (Hh and 
Notch pathway tests). Hh and Notch pathways were stimulated using 
either Shh or an activated Notch (NICD) cDNA construct, respectively. 
Those compounds that minimally impacted these two pathways were 
considered to have specific activity for the Wnt/β-catenin pathway. 
Lastly, IWPs were directly tested for their ability to inhibit Wnt3A 
protein secretion (Wnt secretion test; see Supp. Fig. 2b). Criteria for 
selecting hits are provided. In the end, five IWRs and four IWPs with 
high specificity for attacking the Wnt/β-catenin pathway were selected 
for further analysis (see Fig. 1). Concentration of compounds used in 
each test is noted. Insets show schematics of assays used in the screen 
and secondary tests with the utility of each luciferase signal. Criteria 
used to identify compounds of interest are noted for each test. 
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Supplemental Figure 2. IWR and IWP compounds specifically inhibit the Wnt/β-catenin pathway. (a) Summary of results relating to 
IWR and IWP compounds from the screening process. Wnt pathway tests were performed in either cells responding to autonomously 
produced Wnt protein (L-Wnt-STF cells) or exogenously provided Wnt in conditioned medium (HEK293 cells). (b) IWP compounds inhibit 
Wnt3A secretion. Left: schematic of Wnt-Gaussia luciferase (Wnt-GL) fusion protein used to monitor levels of secreted Wnt protein in the 
cell medium. Right: levels of Wnt-GL but not GL secreted from cells treated with IWP compounds are decreased as compared to cells 
treated with carrier. The Wnt-GL protein elicits levels of Wnt/β-catenin pathway response similar to that of Wnt3A protein (data not shown). 
(c) IWR and IWP compounds generally inhibit Wnt/β-catenin pathway response induced by Wnt proteins. Pathway activity induced 
by Wnt1, Wnt2, or Wnt3A, and monitored using the STF reporter, is decreased in cells treated with either IWR-1 or IWP-2. FL activity was 
normalized to control RL activity as before. 
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Supplemental Figure 3. IWR-3, -4, and -5 share structural similarity. Three-dimensional representation of IWR-3, -4, and -5 in equilibrium geometry using AM1 semi-empirical 
methods reveals similarities in structure. All three structures are superimposed on the right. 



IWP-2

Supplemental Figure 4. Synthetic scheme for IWP-2. A similar synthetic route was
taken to generate IWP-1. 



DMSO
IWP-1 

(2.5µM)
F H F H− −no

 tr
ea

tm
en

t

LRP6

Actin

Deglycosidase:

C

pBSK ShhN ShhN ShhN-
C25S ShhN ShhN ShhN-

C25S ShhN ShhN ShhN-
C25S

Total lysate Aqueous DetergentPhase:

DNA:

IWP-2
(2.5µM): ++ +− − − − − − −

fatty acyl ShhN
fatty acyl and 
non-acyl ShhN

B

A

Wnt5b:
IWP-2 (2µM):

+
−

+
+

−
−

To
ta

l
To

ta
l

To
ta

l

Aq.

Aq.

Det.

Det.

Supplemental Figure 5. Speci�city tests for IWP compounds. (a) IWP compounds inhibit palmitoylation of Wnt5A, a Wnt protein 
that does not presumably activate β-catenin (so “non-canonical” Wnts). (b) IWP compounds do not a�ect maturation of LRP6, a 
process dependent upon palmitoyl modi�cation of its cytotail domain. Lysate derived from DLD-1 cells treated with DMSO or IWP-1 
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Supplemental Figure 9. Synthetic scheme for IWR-1 and IWR-PB compounds. (a) Synthetic route for IWR-1. Endo and exo diastereomers 
result depending on the starting material. (b) A fragment of IWR-1 (IWR-Frag) is incapable of inhibiting Wnt pathway response in L-Wnt 
cells. (c) Synthetic scheme for a biotinylated IWR-1 (IWR-PB). (d) IWR-PB is active in cultured cells. (e) IWR-PB blocks accumulation of 
β-catenin in response in L-Wnt-STF cells. (f) Silver stain analysis of eluted proteins associated with IWR-PB/streptavidin agarose resin 
derived from HEK293 cells transfected with control or Axin2 expression constructs. The identical conditions were used in Western blot 
analysis of full-length Axin2 protein shown in Fig. 4f. (g) Axin2 interacts with IWR independently of other known Wnt pathway components. 
Material associated with IWR-PB under identical conditions used in Fig. 4f was probed by Western blot for various Wnt pathway 
components known to interact with Axin2. (h) IWR-IS abrogates IWR-induced Axin protein stabilization. Cells expressing IWR-IS exhibit 
mitigated Axin protein stabilization in response to IWR-1 as measured using Western blot analysis of a co-expressed Axin1-GFP protein. 
The IWR-1-dependent changes in endogenous Axin1 protein levels confirms the effectiveness of IWR-1 and reveals the low efficiency of 
DNA transfection in these experiments. 
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Supplementary Methods 

Reagents.  

L-Wnt-STF cells were generated by transfecting L-Wnt cells (ATCC) with SuperTopFlash (STF; R. 

Moond) and SV-40 Renilla luciferase plasmids and selecting for clones resistant to G418 and Zeocin. 

The following expression constructs were generously provided by: P. Beachy (Shh and Wnt3A), R. 

Kopan (NICD), P.-T. Chuang (ShhN-C25S), and M. Brown and J. Goldstein (MBOAT family 

members). Wnt1, Wnt2, Wnt3, and Wnt5B expression constructs were purchased from 

OpenBiosystems. Notch reporter construct was provided by J. LaBorda. The Wnt-GL expression 

construct was generated by ligating Wnt3A coding sequence to GL (AA15-185) via an XbaI site. CMV-

GL was generated by inserting the CMV promoter into the pGluc-Basic vector (New England Biolabs). 

Expression constructs for mPorcn-myc and hAxin2-myc constructs were engineered using PCR-

based cloning and mutagenesis strategies. Axin-GFP construct was from M. Bienz. The source of 

primary antibodies used in this study are as follows: β-catenin, Kif3A, Actin, and β-tubulin (Sigma); p-

β-catenin (Ser33/37/Thr41), GSK3β, LRP6, P-Lrp6 (Ser1490), Dvl2, Shh, Axin1, and Axin2 (from Cell 

Signaling Technology); E-Cadherin and PP2A (BD Transduction Laboratories); Myc, Apc, and 

CK1ε (Santa Cruz Biotechnology); and Gsk3β (Stressgen). Pools of four pre-designed siRNA 

reagents used in RNAi experiments were purchased from either Qiagen (APC) or from Dharmacon (β-

catenin). Axin2 primers used in RT-PCR experiments: 5'-AGCTCTGAGCCTTCAGCATC (reverse) 

and 5'-TCAGCAGAGGGACAGGAATC (forward).  

 

Radiolabeling experiments.  

Wnt3A-myc and murine Porc expression constructs were transfected into Cos7 cells (6 well format, 

150K cells/well) using Fugene6 transfection reagent (1:3 DNA:Fugene, Roche). After 48 hrs, the 

medium was replaced with DMEM (HyClone), 2.5% FBS and supplemented with 2.5 µM IWP-2 (0.2% 

DMSO final) as appropriate. 37.5 µCi/mL H3-Palmitate (47.7 Ci/mmol, Perkin Elmer) was added to all 

wells, and media, compound, and radiation replaced after 2 hours. After 4 hrs total incubation time, 

cells were lysed (PBS/ 1% NP-40/ protein inhibitors) and Wnt3A-myc pulled down with anti-Myc 

monoclonal crosslinked to Protein G agarose. Precipitated material was run out on a 4-20% gradient 

gel (Biorad), transferred to nitrocellulose, and exposed through a LE Transcreen to film at -80oC for 14 

days. 

 

 

 

 



Chemical synthesis, continued. 

 
IWP-1: 1H NMR (400 MHz, DMSO-d6) δ 12.42 (br, 1H, NH), 8.98 (t, J = 5.9 Hz, 1H, NH), 
8.73 (d, J = 7.8 Hz, 1H), 8.38 (d, J = 7.8 Hz, 1H), 7.99 (dd, J = 7.8, 7.6 Hz, 1H), 7.92 (dd, J = 
7.8, 7.6 Hz, 1H), 7.65 (d, J = 8.2 Hz, 2H), 7.63 (d, J = 8.5 Hz, 1H), 7.54 (d, J = 2.3 Hz, 1H), 
7.08 (d, J = 8.2 Hz, 2H), 7.02 (dd, J = 8.5, 2.3 Hz, 1H), 4.28 (d, J = 5.9 Hz, 2H), 3.83 (s, 3H), 
3.80 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ 179.7, 168.3, 163.7, 158.7, 158.4, 156.2, 155.7, 
137.9, 134.3, 133.9, 132.8, 132.3, 128.0, 127.5, 127.3, 126.8, 126.7, 121.2, 114.9, 113.7, 104.7, 
55.6, 55.5, 42.4; MS(ES+) calcd for C26H22N5O5S (M+H)+ 516.1, found 516.1. 
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IWR-3: 1H NMR (400 MHz, DMSO-d6) δ 8.24 (t, J = 6.0 Hz, 1H, NH), 8.09 (dd, J = 7.8, 
0.4 Hz, 1H), 7.70–7.64 (m, 2H), 7.32–7.19 (m, 9H), 6.92 (d, J = 6.9 Hz, 1H), 6.05 (s, 1H), 
5.25 (s, 2H), 4.23 (d, J = 6.0 Hz, 2H), 3.88 (d, J = 6.9 Hz, 2H), 2.90 (s, 3H), 2.16–2.11 
(m, 1H), 1.77–1.71 (m, 5H), 1.37–1.28 (m, 2H), 1.09–1.00 (m, 2H); 13C NMR (75 MHz, 
CDCl3) δ 175.1, 161.5, 161.2, 160.6, 153.4, 151.0, 143.6, 139.9, 136.9, 135.4, 128.3, 
128.2, 127.1, 126.7, 124.5, 123.0, 118.9, 115.1, 114.8, 101.9, 47.2, 46.9, 44.0, 41.8, 35.7, 

29.7, 28.9, 24.1; MS(ES+) calcd for C33H34N5O4 (M+H)+ 564.3, found 564.1. 
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IWR-1: 1H NMR (400 MHz, CDCl3) δ 10.72 (s, 1H, NH), 8.89 (dd, J = 7.3, 1.1 Hz, 1H), 8.81 
(dd, J = 4.1, 1.2 Hz, 1H), 8.17 (dd, J = 8.2, 1.1 Hz, 1H), 8.13 (d, J = 8.4 Hz, 2H), 7.56 (dd, J = 
8.2, 7.3 Hz, 1H), 7.53 (dd, J = 8.2, 1.2 Hz, 1H), 7.46 (dd, J = 8.2, 4.1 Hz, 1H), 7.37 (d, J = 8.4 
Hz, 2H), 6.28 (s, 2H), 3.53 (s, 2H), 3.47 (s, 2H), 1.80 (d, J = 8.8, 1H), 1.62 (d, J = 8.8, 1H); 13C 

NMR (100 MHz, CDCl3) δ 176.5, 164.6, 148.4, 138.8, 136.5, 135.2, 134.9, 134.8, 134.5, 128.2, 128.0, 127.5, 126.9, 122.0, 
121.8, 116.6, 52.4, 46.0, 45.7; MS(ES+) calcd for C25H20N3O3 (M+H)+ 410.2, found 410.1. 
 
 

 
 

 
 

1.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.0

1
.1
1

1
.1
2

4
.4
5

2
.0
6

2
.2
1

1
.1
7

2
.2
7

3
.3
8

1
.0
9

1
.0
6

1
.0
0

404550556065707580859095100105110115120125130135140145150155160165170175180

CHCl3


	Supplemental Figure 2 Chen.pdf
	Supplemental Figure 3 Chen.pdf
	Supplemental Figure 4 Chen.pdf
	Supplemental Figure 5v2 Chen.pdf
	Supplemental Figure 7v2 Chen.pdf
	Supplemental Figure 8v2 Chen.pdf
	Supplemental Figure 9v2 Chen.pdf
	Supplemental Figure 10v2 Chen.pdf
	Chen et al NCB Supp Methods.pdf



